
Summation of Series of Positive Terms by 
Condensation Transformations* 

By James W. Daniel** 

Abstract. The condensation transformation, which maps series of positive terms 
into more conveniently summed alternating series, each term vj of which is itself 
an infinite series, is discussed with examples. It is shown that for a large class of 
extremely slowly convergent series (essentially those dominated by the "logarithmic 
scale") the series defining the terms vj are more easily summed than the original and 
may in fact be transformed further if desired. Numerical examples reveal the power 
of the method. U 

I. Introduction. When faced with the necessity of calculating the sum of an 
infinite series, an ingenious analyst can often obtain satisfactory results by using 
analytical techniques such as the Euler-Maclaurin sum formula, the calculus of 
residues, estimation by integrals, and so forth; sometimes, however, even the most 
wily must resort merely to adding up terms; probably aided by some acceleration 
technique. 

If the series of interest is an alternating one, the classical method of Euler or the 
more recent e-algorithm usually converges fairly rapidly; these methods are widely 
used and easily programmed for a computer [3], [6]. If the series consists of positive 
terms, however, one usually uses some other suitable transformation such as the 
p-algorithm, Romberg extrapolation, and so on, to improve the convergence of the 
sequence of partial sums. Recently A. van Wijngaarden [4] has suggested a simple 
linear transformation of the original series into an alternating series, a technique 
which appears to be of great value, particularly for very slowly convergent series 
[1]; it will be seen that the advantage of this technique lies in its ability to transform 
series repeatedly until one is obtained for which simple summation or application of 
an aforementioned acceleration method will be successful. This paper describes the 
method, examines some theoretical aspects, and shows with numerical examples 
how it can be used in practice. 

II. The Basic Transformation. Let s = E-1 ai be the series of positive terms 
we seek to evaluate. Formally, we define vj = 01 bj,i, bj,i = 2i-laJ2i-1, and see 
that EiL1 (-1) i+lvj = = s. Thus s is obtained as the sum of an alternating 
series of terms vj each of which is defined as an infinite series, hopefully more readily 
summed than the original. For example, suppose a = i-C, c > 1. Then we have 

00 00 
V= 2i-l(j2i'-)-c =jc > 2(1-c)(i-1) = j-C(l - 21-c)-1 

i~=l i=l 
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and the series for each vj exhibits geometric convergence, an improvement over the 
original series. Summing the alternating series yields the classical result 

00 00 

=i-C (1 - 
21-c)- 

> ( 1) j+-c 
i=l j=1 

Generally vj will not be summable in closed form, but it will be easier to sum than s. 
Observing that E>.=i ai = E=i1 (v2i - v2i) - 21 vi, van Wijngaarden 

proved the following: 
THEOREM 1. >j=i ai and X 1 (-1) i+lvj both exist and are equal if and only if 

(a) 2i., as converges, 
(b) vj is finite for all j, 
(C) limvN;o Di=N+1 Vi = 0. 

The simplest theorem that yields the above three conditions is 
THEOREM 2. Suppose that ai, i = 1, 2, * * *, is a monotone decreasing sequence; then 

(Cauchy's condensation theorem) v is finite if and only if >jo=1 ai < oo. If vi is finite 
then all vj are finite and ) (-1)i+1vi = ,,i. ai. 

Proof. The first statement is merely Cauchy's condensation theorem [2]; for the 
second we use Theorem 1. 

N+1 N+1 2N 

> bj,i = a1 + 2 E 2i-2a2i-1 < aj + 2 E aji. 
i=l i=2 i=2 

Now aji < j-1 Ej., aj(i-l)+k; inserting this in the preceding yields 
N+1 2 
> bj,i < aj+ + Tj, 
i=l ,a 

where Tj- =j+1 ai is the tail of a convergent series. Thus vj < aj + 2Tj/j < oo, 

and hence 

2N 2N Ti 2N TN 
E v< TN + 2 < TN+ 2 < 3TN. 

i=N+l i=N+l t i=N+l N 

Since limNv,0 TN = 0, the conditions of Theorem 1 are met. Q.E.D. 
COROLLARY. Suppose ai < Ai where Ai is a monotone decreasing sequence such 

that i A i < oo . Then v j exists for all j and ,1 (-1) i+lvj = E 1 ai both con- 
verge. 

If ai is not dominated by a monotone sequence, only nearly trivial conditions 
are known which guarantee the conditions of Theorem 1; the following is typical. 

PROPOSITION 1. Suppose X1=1 ai < oo and a sequence of positive numbers Lj 
exists such that 2i-1 aj2i-1 < Ljai for all i > 1 and all odd j > 1. Then v; exists for all 
j; if lim1-+00 Li=N+1 Lj = 0, then Ei-= (-1)i+'v1 = as. 

III. Nature of the Transformation. Clearly the transformation from the series 
in ai to that in vj is a linear one; it is not, however, regular in the sense of preserving 
convergence and limit for arbitrary positive series. Perhaps the transformation 
should be called antiregular since, as the following shows, it is divergence preserving. 

THEOREM 3. If >,17 ai = 00o then either vj = oo for some j or X,2= (_1)i+lv1 
diverges to + oo. 

Proof. Suppose v; < oo for all j. Since we have 



SUMMATION OF SERIES OF POSITIVE TERMS 93 

N VN 2N N 

a; = E (v2il- - V2i), v ? <j (V2i1 - 
il i= i==N+l i1 

the last series diverges. Q.E.D. 
All other combinations of convergence and divergence can occur, however, as 

the next examples show. 
(1) ?=1ai < oo,butsomev1== oo: 

a2n = n = O 1* ai = .2 otherwise . 

(2) i=, ai = oo, EoL1 (- 1)i+lvj diverges, vj < oo for all j: 

a12n = n-, n = 0 12 *** jodd. 
j *4 

Then, Vj2m = 2/j4m, m = 0,1, ***, j odd. Here 

limV = O, Vj2ml - Vj2m =2 1 j4m - ? 
k-boo 2 -1 4 

For m > 0 the sum over odd j of these terms diverges so 21 (-1) i+1vj diverges. 
(3) i-l ai < m, E {=1 (-1) i+lvj divergent: 

a 2n =a+1 > 2, j odd. 

Here Vj2m = ja-2/2m(1 + 1/ja)m-, so limk,. vk does not exist. 
(4) oo > E7.1ai 5- E' 1 ()i+lvj < oo 

aJ2fl = 2n(1 + 1/j)-n2 j2odd- 

Then 

1 j2m 
V j2m - , llfVkO0, Vj2M-1 Vj2m 

j2 (1 + 1/j)M ' k--oo- (2m 1)2 

1 1 1 > 

j2m(1 + 1/j)m-1 j2m - 2 + 1/j2m j2m(1 + 1/j)m1 

By adding and subtracting we compare the series composed of these last differences 
with the series 

1 1 2 

j2m - 2 j2m j2m(j2m - 2) 

and it follows easily that E- (-1) +lv converges. Finally, 

2N 2N 4N 2N 

a= E (V2-l -V2) - V i < E (V2i-1 - V2i) - V2N+1 
i=l i=1 i=2N+l i=1 

2N 2NV+ 2 

- V2n+3 - **- 4-1 = 2i-1 V2i) - (2N + 1)2 

4N 2N 411V 

(4N-)2 
< 

(V2i...l -V2i)-N (4 1) 



94 JAMES W. DANIEL 

Letting N tend to infinity yields X1 a2 a L (-1) i+ivj - 
Since we hope to compute vj more easily than s, it is fortunate that for decreasing 

ai the series for vj converges faster than the original in the sense that X=N+1 b, i 
? j-2 ?ij2NV-1+i aj; therefore, to compute vj or s to within a fixed absolute error, 
fewer terms are required for the former. It is not true in general that 

00 / 00 
lim , bi,/ i ai = O, 
N-*oo i=N+l i=N+1 

a common definition of faster convergence; the limit is zero however for the useful 
test series 

ai(p, c) = 1/(i(In, i) (In2 i) (ln,, i) (In,' i)) for c > 1 

where ln, x = ln x, lnp+1 x = ln (In,, x). For these series in fact the series defining vj 
converges like ai(p - 1, c). 

IV. Recursive Condensation. For notational conveniience, let v(?) be the set of 
v; obtained by applying the condensation transformations to the original series 
s = 00 

as; for n > 1, let vn) refer to the set of v; obtained by applying the trans- 
formations to each series defining the elements of v(n-1). One would hope that ele- 
ments of the successive sets v( would be increasingly easy to sum, thus allowing us 
to compute s with few evaluations of ai. The question arises as to the values of n for 
which Vn) consists of finite elements. 

THEOREM 4. Let ai < A 2, where A X, iA i, i(ln i)A X, **, i(In i)** (In, i)A i all de- 
crease as i increases. If , A i < oo, then for n = 0, 1, * p + 1 the elements of 
V n) exist and are finite, and the relevant alternating series converge to the appropriate 
sums. 

Proof. By the Corollary to Theorem 2, the conclusion is valid for n = 0. The 
series defining vj is 

0? 
-a2 

1 00 
( ')aj2i-1 2'-laj2-. . E (j2i')viXl 

t=1 J t~~~=1 

the terms in this series are dominated by 

j2'-lA j2i-1_ j2'-lA2*-l jAi(1 
Now we show that A i(1), and hence jA i(1), satisfies the assumptions of this theorem 
for p replaced by p - 1. For 

i(ln i)* (ln. i)A ijf = i(ln i) ... (lnm i)2z-lA2i-l= n(d ln n + 1) ln (d ln n + 1) 

***ln, (d In n + 1)An n=2',Id-1/In2 > 1 . 

This in turn equals 

(n (ln n) (ln ln n) (lnm+, n)An) ln n+ ) 

ln (d ln (n + 1)) lnm (d ln (n + 1)) 
lnl nn n. (ln n) 

By assumption, the first factor in parentheses decreases for m < p - 1; for the other 
factors we let f(x) lnm (dx + 1)/lnm x and see that the sign of f'(x) is that of 
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In x 1I-n. (dx + 1) 
-Im X - (dx + 1) Inm-2 (dx + 1) x + 1/d] m 

-In.-, x x 

Therefore, defining A i(n) 
= 

2i-1A (j, 

we see that the assumptions of the theorem 

hold for A i(8) with p replaced by p - n for n _ p, and that the A j(n) dominate the 
elements of v(n). For n = p we have A i(P) and iA i (p) decreasing, which implies the 
result of the theorem for v(P) and v(p+l). Q.E.D. 

COROLLARY. If for some p ? 0 and c > 1 we have ai _ A/i(ln i) ... (lnpci), then 
the v (n) exist for all n ? 0 and the relevant alternating series converge to the appropriate 
sums. 

Since in practice most convergent positive series meet the requirements of 
Theorem 4, repeated use of the condensation transformations will generally be valid. 
In more pathological cases, the extension of Proposition 1 may be useful. 

PROPOSITION 2. If >*=1 ai < oo and 2i-1a,2i-1 < Lja*, then the elements of v(n) 
exist for all n > 0. If limNv m !Nl+i Li = 0, then all the relevant alternating series 
converge to the appropriate sums. 

Proof. We only need observe that 

2M-12k-2M~-1 aj2k2M-1-1 :!! LjLkam. Q.E.D. 

V. Practical Summation. To devise a practical method of summation imple- 
menting condensation transformations, one faces the usual difficult questions of 
numerical analysis. How shall we define convergence so as to get answers in finite 
time? How shall we decide whether condensation is called for or whether the series 
can be summed in a more direct fashion? What should this direct fashion be? How 
should we sum the resulting alternating series? The list is far from complete. 

Experience seems to indicate that even a rather naive set of answers to these 
questions will lead to a valuable summation method; of course the more refined the 
answers the more powerful the method. The real value of the overall approach lies 
in its ability to improve convergence repeatedly until a more straightforward method 
works. To give an indication of this ability in practice we report some simple nu- 
merical experiments based on an unsophisticated implementation of condensations; 
following the examples are some suggestions for a more sophisticated routine. Such 
routines are under development and will be reported elsewhere. 

VI. Examples. Several examples were studied at the Mathematisch Centrum in 
Amsterdam and the Mathematics Research Center in Madison. In the program used, 
convergence was defined by van Wijngaarden's concept of incredulity [5]; con- 
vergence was assumed to occur whenever the approximate sum changed by less than 
a small number 'max zero' for 'tim' times in succession. If convergence would have 
been attained by direct addition of 'maxaddup' terms, the addition was performed; 
otherwise condensation was used, taking advantage of the relation V2j1 = (vj - aj). 
The resulting alternating series were summed by Euler's method as described in [3]. 

Consider ai 1/(i + 1) ln2 (i + 1), the sum of whose series satisfies 2.109741 
< S < 2.109743. For 'tim' = 1 and 'max zero' = 10-3 10-4 10, we computed 
2.1052, 2.1046, and 2.1090 requiring 181, 392, and 1021 evaluations of ai respec- 
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tively; it is not clear how the error varies with 'max zero'. In all cases the program 
used elements from v (0), v (l) and v(2). Although this series can be summed easily by 
analytic techniques, the example shows the method's effectiveness on slowly con- 
vergent series; the remainder after directly adding 6300 terms is greater than .114. 
An increase in 'tim' increases the accuracy, but not appreciably; for example, for 
'tim' = 3 and 'max zero' = 10-4 and 10-6 the sums are 2.1086 and 2.1090. 

Consider the series t=. (1/1.001)i = 1000, which is rather slowly convergent; 
the remainder after 3000 terms is greater than 50. For 'tim' = 1 and 'max zero' 
= 10-2 and 10-, we obtained 999.95 and 999.9998, in both cases using elements 
from v (0) and v (1). 

For the series 2t= 1 i-2 = ir2/6 = 1.64493407, with 'tim' = 1 and 'max zero' 
= 10-4 and 10-6, we obtained 1.6448 and 1.6449348, using v(0) and v). 

These examples serve to reveal both the power of the method and the weakness 
of its implementation; it seems clear that something other than direct summation 
should be used when condensation is not required. For example, we experimented 
briefly with the p-algorithm [6] substituted for direct summation and the repeated 
e-algorithm [5] for Euler summation. The results for the slowly convergent series of 
the first example above are striking; with 'tim' = 1 and 'max zero' = 10-i we ob- 
tained s = 2.1093 with only 78 evaluations, a marked improvement in both accuracy 
and number of evaluations. 

Clearly the ideal approach to an all-purpose summation routine would be a blend 
of such methods as the e-algorithm, p-algorithm, Romberg extrapolation, etc., with 
condensation used on extremely slowly convergent series like the logarithmic scale 
a (p, c) to bring the convergence to a level which the other methods can handle. 
The crucial problem here of course is the automatic selection of the proper accelera- 
tion technique; at present we seem compelled to rely on a priori human judgement. 
Since the human usually knows something about his series to be summed, this 
situation is not unbearable. 
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